Introduction We are an experimental quantum optics group run by Kevin Resch, based in the Department of Physics & Astronomy and the Institute for Quantum Computing at the University of Waterloo.
|
Our article, An experimental test of noncontextuality without unphysical idealizations, by Mike Mazurek, Matt Pusey, Ravi Kunjwal, Kevin Resch, and Rob Spekkens was just published in Nature Communications. This work is the result of a collaboration between IQC and the Perimeter Institute on Experimental Quantum Foundations.
Abstract: To make precise the sense in which […]
Our new article Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory by K.A.G. Fisher, D.G. England, J.-P.W. MacLean, P.J. Bustard, K.J. Resch, and B.J. Sussman was published in Nature Communications. The work is the result of our collaboration with Ben Sussman’s Quantum Technology group at the National Research Council of […]
Our article, Experimental nonlocal and surreal Bohmian trajectories, by D. H. Mahler, L. Rozema, K. Fisher, L. Vermeyden, K.J. Resch, H.M. Wiseman, and A. Steinberg was published in Science Advances. The work is the result of a collaboration between the University of Toronto, Griffith University, and University of Waterloo.
Abstract: Weak measurement allows one to […]
Our article, Certifying the Presence of a Photonic Qubit by Splitting It in Two, by Evan Meyer-Scott, Daniel McCloskey, Klaudia Gołos, Jeff Z. Salvail, Kent A. G. Fisher, Deny R. Hamel, Adán Cabello, Kevin J. Resch, and Thomas Jennewein just appeared in Physical Review Letters. The paper was chosen as an Editors’ Suggestion.
Abstract: We […]
Our article, A quantum advantage for inferring causal structure, by Katja Reid, Megan Agnew, Lydia Vermeyden, Dominik Janzing, Rob Spekkens, and Kevin Resch just appeared in Nature Physics. Giulio Chirabella wrote a News and Views piece on it entitled, Quantum information: Good causes.
Abstract: The problem of inferring causal relations from observed correlations is relevant […]
Our article, Theory of high-efficiency sum-frequency generation for single-photon waveform conversion, by John Donohue, Mike Mazurek, and Kevin Resch was just published in Physical Review A. The article studies the problem of single photon frequency conversion using sum-frequency generation, calculating how well the properties of the upconverted photon match a simpler first-order approximation.
Abstract: The […]
Our new article Storage and Retrieval of THz-Bandwidth Single Photons Using a Room-Temperature Diamond Quantum Memory by D.G. England, K.A.G. Fisher, J-P.W. MacLean, P.J. Bustard, R. Lausten, K.J. Resch, and B.J. Sussman was published in Physical Review Letters. The work is the result of a great collaboration between our group and Ben Sussman’s Quantum Technology […]
We have a new paper in Physical Review Letters entitled, Ultrafast Time-Division Demultiplexing of Polarization-Entangled Photons, by John Donohue, Jonathan Lavoie, and Kevin Resch.
Abstract: Maximizing the information transmission rate through quantum channels is essential for practical implementation of quantum communication. Time-division multiplexing is an approach for which the ultimate rate requires the ability to […]
Check out our new paper in Nature Photonics entitled, Direct generation of three-photon polarizaton entanglement, by Deny R. Hamel, Lynden K. Shalm, Hannes Hübel, Aaron J. Miller, Francesco Marsili, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Kevin J. Resch, and Thomas Jennewein.
Abstract: Non-classical states of light are of fundamental importance for emerging […]
We have a new paper out (online) in Nature Photonics today entitled, Experimental three-photon quantum nonlocality under strict locality conditions, by Chris Erven, Evan Mayer-Scott, Kent Fisher, Jonathan Lavoie, Brendon Higgins, Zhizhong Yan, Chris Pugh, Jean-Phillipe Bourgoin, Robert Prevedel, Krister Shalm, Laura Richards, Nick Gigov, Raymond Laflamme, Gregor Weihs, Thomas Jennewein, and Kevin Resch. This […]
|
|